Abstract

Research is carried out on the basis of the traditional two-end matched circuit of a capacitive voltage divider with a long measurement cable. Transmission progress in the circuit is analyzed theoretically. A match condition of the circuit is acquired, which requires that the circuit satisfies two conditions: (1) the measurement error should be small for a pulse with a duration of less than twice the delay time of the measurement cable; (2) the initial division ratio and the stable division ratio of the circuit are the same. Two matched methods of the circuit are acquired, including the first-order matched method and the second-order matched method. Numerical simulations are carried out. According to the simulation results, the relative errors of the circuits with a cable of 20 m are less than 1.5%, obtained by using both match methods for measurement of rectangular pulses with rise and fall times of 5 ns. An improved circuit is presented, which is suitable for any situation where the low-voltage capacitance of the capacitive divider is even smaller than the capaictance of the measurement cable. A verification experment is carried out, and the test result confirms the simulation result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.