Abstract

Aim: The aim of this study was to evaluate the marginal adaptation of ceramic and composite resin crowns fabricated with computer-aided design and computer-aided manufacturing (CAD/CAM) technology using an intraoral digital scanner. Methods: A human mandibular right second molar was prepared for a ceramic crown. The impressions were made using intraoral scanning device and crowns were milled. Tem crowns were fabricated for each group (n=10): GF – Feldspathic Ceramic (Cerec Blocs, Sirona), GL - Lithium Disilicate Ceramic (IPS e.max CAD, Ivoclar), GG - composite resin (Grandio Blocs, VOCO) and GB - composite resin (Brava Block, FGM). The marginal gap was measured for each specimen at 4 points under magnification with a stereomicroscope. All data were statistically analyzed using one-way ANOVA followed by the Tukey’s test (α=.05). Results: The lowest marginal discrepancy value was observed in GB (60.95 ± 13.64 μm), which was statistically different from the GL (84.22 ± 20.86 μm). However, there was no statistically significant difference between these groups when compared with the other groups, GF (73.26 ±8.19 μm) and GG (68.42 ± 11.31 μm). Conclusion: It can be concluded that the composite resin presented the lowest variance compared to the lithium disilicate glass ceramic, although the marginal gap of all materials tested was within the acceptable clinical limit (120 μm).

Highlights

  • In recent years, newer technologies have been developed in dentistry with the purpose of improving the outcome of indirect restorations[1]

  • Aim: The aim of this study was to evaluate the marginal adaptation of ceramic and composite resin crowns fabricated with computer-aided design and computer-aided manufacturing (CAD/CAM) technology using an intraoral digital scanner

  • Ten crowns were fabricated for each group (n=10): GF - Feldspathic Ceramic (Cerec Blocs, Sirona), GL - Lithium Disilicate Ceramic (IPS e.max CAD, Ivoclar), GG - composite resin (Grandio Blocs, VOCO) and GB - composite resin (Brava Block, FGM)

Read more

Summary

Introduction

Newer technologies have been developed in dentistry with the purpose of improving the outcome of indirect restorations[1]. The computer-aided design and manufacturing (CAD/CAM) system is an innovative technology, wherein planning and fabrication of prostheses are performed using a computer[2]. With this technology, it is possible to create a virtual model of the prosthetic preparation, occlusal relationship of the arches, and plan the restoration. There are two main types of dental CAD/CAM scanners namely intraoral and extraoral scanners. Intraoral scanners are used chairside to scan the dental arches of patients; while extraoral scanners are used in the dental laboratory to scan casts[4]. In order to be considered an acceptable alternative to conventional impression methods, intraoral scanning devices should yield crowns with similar or better clinical success[3,9]

Objectives
Methods
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.