Abstract

A numerical analysis of the characterization of the water flow through a flat solar collector is presented. The manifold area change for minimizing the water flow variation in the solar collector is analyzed. The area ratio in the inlet and outlet of the manifolds were modified in a range of Am/Ao = 1 to 4, where Am and Ao are the cross-sectional area modified and original of the manifolds, respectively. The solar collector investigated is equipped with six riser tubes, which are attached to the manifolds pipe. The numerical study was developed in a commercial Computational Fluid Dynamics (CFD) using FLUENT®. This code allows to solve the Reynolds averaged Navier-Stokes equations and the transport equations of the turbulence quantities. The results shown that increasing the inlet and outlet area of the manifolds allow a more uniform flow distribution compared to the original configuration of the solar collector. It also shows that the overall pressure drop in the solar collector is reduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.