Abstract

Following a recently reported synthesis of linearly halide-bridged Cu(II) complexes [Inorg. Chem. 2012, 51, 7966-7968] characterized by strong antiferromagnetic exchange couplings (J), we applied Difference Dedicated Configuration Interaction (DDCI) and Broken-Symmetry Density Functional Theory (BS-DFT) approaches in order to analyze theoretically the trend observed, in which the decreasing electronegativity of the central halide induces an exacerbed magnetic coupling. The importance of the magnetic orbitals in DDCI calculations is acknowledged. The use of reduced molecular models is shown to lead to significant differences in J, in the case of chloride and bromide bridges. Finally, the BS-DFT decomposition of J in its main physical contributions confirms the importance of the kinetic exchange mediated by the halide bridge, but also points towards an increasing core polarization contribution when going from fluoride to bromide. Keywords: Broken-Symmetry DFT, Difference Dedicated CI, Magnetic exchange coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.