Abstract

Accurate estimates of the magnetic coupling in binuclear complexes can be obtained from ab initio configuration interaction (CI) calculations using the difference dedicated CI technique. The present paper shows that the same technique also provides a way to analyze the various physical contributions to the coupling and performs numerical analysis of their respective roles on four binuclear complexes of Cu (d9) ions. The bare valence-only description (including direct and kinetic exchange) does not result in meaningful values. The spin-polarization phenomenon cannot be neglected, its sign and amplitude depend on the system. The two leading dynamical correlation effects have an antiferromagnetic character. The first one goes through the dynamical polarization of the environment in the ionic valence bond forms (i.e., the M+⋯M− structures). The second one is due to the double excitations involving simultaneously single excitations between the bridging ligand and the magnetic orbitals and single excitations of the environment. This dispersive effect results in an increase of the effective hopping integral between the magnetic orbitals. Moreover, it is demonstrated to be responsible for the previously observed larger metal-ligand delocalization occurring in natural orbitals with respect to the Hartree–Fock ones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call