Abstract

This paper analyses an isothermal calendering for an upper convected Jeffery’s Material. Lubrication Approximation Theory (LAT) is applied to simplify the flow equations. Analytical solutions of velocity, flow rate, and pressure gradient are carried out. Outcomes of sheet thickness, detachment point, roll separating force, power input to the roll, and pressure distribution are obtained. The effects of some involved parameters are displayed through graphs and tables. It is noted that the material parameter is a controlling device for sheet thickness, flow rate, detachment point, roll separating force, power input, and the pressure distribution. We observed that as the material parameter increases, the detachment point increases which results in increased sheet thickness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.