Abstract

The importance of the saturation effect of cold nuclear matter (NM) on describing the fusion hindrance phenomenon at extremely low incident energies is investigated for the medium-heavy mass system of 58Ni+54Fe. From the theoretical viewpoint, for considering the mentioned property during the fusion process one can use the double-folding (DF) model which is modified through the repulsive core effects as a basic heavy ion–ion potential. The theoretical calculations of the fusion cross sections are performed using the coupled-channel technique, including couplings to the low-lying and states in target and projectile. It is shown that the corrective effects of the cold NM provide an appropriate description for the energy-dependent behavior of the measured fusion cross sections at extremely low incident energies. Moreover, we find that the calculated results of the astrophysical S factor and the logarithmic derivative based on the modified form of the DF model are in good agreement with the corresponding experimental data at these energies. A discussion is also presented about the predictions of the present sudden approach for the behavior of the fusion cross sections at high incident energies. The obtained results reveal that this behavior depends on the nuclear structure of the reacting nuclei.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call