Abstract

Closed reduction and percutaneous pinning is still a preference for the treatment of supracondylar humerus fractures in children. However, no reports have shown the pin trajectory and the characteristics of the entry point so far. So we established a computational simulation model of the elbow to observe the trajectory of pinning for supracondylar humerus fractures. We reconstructed an adult elbow computationally and simulated pin placement through lateral and medial pinning. Pin trajectories were traced after placement and after the addition of the skin profile; the relative entry points of the pins were determined. We used the center of the dorsal olecranon inflection as an anatomic reference for the entry points of lateral pinning. Four quadrants were established based on the center of the dorsal olecranon inflection: upper medial quadrant, upper lateral quadrant, lower medial quadrant, and lower lateral quadrant (LLQ). The maximum angle of pinning through the lateral column was 64°±3°. The minimum angles of pinning through the lateral column and middle column were 37°±3° and 20°±2°, respectively. The range of safe angle pinning through the medial column was between 18°±2° and 57°±3° to avoid penetration of the olecranon fossa and the cortex of the medial column. The entry points of lateral pinning were within the lateral half of the LLQ, and the lateral one-third of the LLQ contained all entry points of the pins through the lateral column and minor points of the pins through the middle column. The exit points of the medial pinning were within the lateral fringe of the metaphyseal-diaphyseal junction region; entering from the inferior two-thirds of the medial epicondyle could lead to the exit points in the proximal half of the metaphyseal-diaphyseal junction region laterally. For lateral pinning, the entry points would be within the lateral half of the LLQ. For the pins through the lateral column, the entry points should be within the lateral one-third of the LLQ. For medial pinning, entering from the inferior two-thirds of the medial epicondyle would lead to a more proximal exit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.