Abstract
Stress redistribution induced by excavation results in the tensile zone in parts of the surrounding rock mass. It is significant to analyze the localization of deformation and damage, and to study the complete stress–strain relation for mesoscopic heterogeneous rock under dynamic uniaxial tensile loading. On the basis of micromechanics, the complete stress–strain relation including linear elasticity, nonlinear hardening, rapid stress drop and strain softening is obtained. The behaviors of rapid stress drop and strain softening are due to localization of deformation and damage. The constitutive model, which analyze localization of deformation and damage, is distinct from the conventional model. Theoretical predictions have shown to consistent with the experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.