Abstract

The flavoprotein NADH peroxidase from Enterococcus faecalis 10C1 has been shown to contain, in addition to FAD, an unusual cysteine-sulfenic acid (Cys-SOH) redox center. The non-flavin center cycles between reduced (Cys-SH) and oxidized (Cys-SOH) states, and the 2.16 A crystal structure of the non-native cysteine-sulfonic acid (Cys-SO3H) form of the wild-type peroxidase supports the proposed catalytic role of Cys42. In this study, we have employed a site-directed mutagenesis approach in which Cys42 is replaced with Ser and Ala, neither side chain of which is capable of redox activity. Reductive titrations of both C42S and C42A mutants lead directly to full FAD reduction with 1 equiv of either dithionite or NADH, consistent with elimination of the Cys-SOH center. Direct determinations of the redox potentials for the FAD/FADH2 couples yield values of -219 and -197 mV, respectively, for C42S and C42A peroxidases, indicating that the presence of Cys42-SH in the two-electron-reduced wild-type enzyme lowers the flavin potential by approximately 100 mV. Anaerobic stopped-flow analyses of the reduction of C42S and C42A peroxidases by NADH demonstrate that in both cases flavin reduction is rapid; these results are confirmed by enzyme-monitored, steady-state kinetic analyses which, in addition, give turnover numbers approximately 0.04% that of wild-type enzyme. These results are entirely consistent with the role proposed for Cys42 in the catalytic redox cycle of wild-type NADH peroxidase and indirectly support its function as a peroxidatic center in the homologous NADH oxidase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.