Abstract

The subfamily Harpactorinae is composed of six tribes. Phylogenetic studies bring together some of Harpactorinae tribes, but by and large the data on evolutionary relationships of the subfamily are scarce. Chromosome studies are of great importance for understanding the systematics of different groups of insects. For Harpactorinae, these studies are restricted to some subfamilies and involved only conventional chromosome analysis. This work analyzed cytogenetically Ricolla quadrispinosa (Linneus, 1767). The chromosome number was determined as 2n = 24 + X1X2Y in males. In metaphase II the autosomal chromosomes were organized in a ring with the pseudo-trivalent of sex chromosomes in its center. After C-banding followed by staining with DAPI, AT-rich blocks in autosomes were observed and the negatively heteropycnotic sex chromosomes. The data obtained, together with existing data for other species of the group, indicated that different chromosomal rearrangements are involved in the evolution of the species. In addition, a proposal of karyotype evolution for the subfamily, based on existing phylogenetic studies for the group is presented.

Highlights

  • Reduviidae are the largest family of predatory insects of the suborder Heteroptera, consisting of approximately 7000 species (Kaur et al 2009, Weirauch et al 2014)

  • The cytogenetical variations result from chromosomal rearrangements in autosomes and sex chromosomes

  • The fluorochrome staining with DAPI performed after the C-banding revealed several AT-rich blocks in the autosomes, which were located in both the terminal and interstitial regions of the autosomes while the sex chromosomes were shown to be negatively heteropycnotic (Fig. 1e)

Read more

Summary

Introduction

Reduviidae are the largest family of predatory insects of the suborder Heteroptera, consisting of approximately 7000 species (Kaur et al 2009, Weirauch et al 2014). In Harpactorinae cytogenetic studies are restricted to only three of the six tribes: Apiomerini, Dicrotelini, and Harpactorini (Table 1), showing diploid numbers ranging from 12 to 30, a predominance of 24 autosomes and several sex systems (XY, XnY) (Table 1) (Kuznetsova et al 2011, Kaur and Kaur 2013). The cytogenetical variations result from chromosomal rearrangements in autosomes and sex chromosomes. This type of alteration is an important factor in the speciation process, since causing dramatic effects on fertility (Spirito 1998, Rieseberg 2001, Livingstone and Rieseberg 2003, Nosil et al 2009, Macaya-Sanz et al 2011)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.