Abstract

A study of the behavior of the main characteristics of the ionosphere over Europe during the 26–28 February 2023 ionospheric storm was carried out in this present work. The additional influence of sudden stratospheric warming on the ionosphere was considered. The behavior of the critical frequency of the ionosphere foF2 (characterizing the maximum electron density), the peak height of the F2-layer (hmF2), and Total Electron Content (TEC) were investigated through their relative deviations from the quiet conditions. The behavior of the TEC over Europe showed the geographic latitudinal dependence of the response. The variability in the ionospheric critical frequency was represented by the data of 10 ionospheric stations for vertical sounding located in two groups: (i) near the prime meridian and (ii) near the 25° E meridian. Some differences were found in the response compared to the TEC response, which was explained by the different responses of the top maximum region and bottom maximum region. The peak height of the F2 layer varied strongly during the storm, which was due to the forced drift of ionospheric plasma induced by additional electric fields. The present detailed analysis of the ionospheric response shows that the considered storm exhibited characteristic features inherent in the winter season but with some manifestations of reactions in equinox conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call