Abstract
AbstractThe formation of intragranular microstructure in Al2O3/ZrO2 and Si2N2O/Si3N4 nanocomposites was analyzed, and the effect of intragranular microstructure on the mechanical properties of nanocomposites was investigated. Results suggest 3 requisite conditions for the formation of intragranular microstructure and the role of intracrystalline glass phase and scar microstructure. In case of Al2O3/ZrO2, the intragranular microstructure leads to the formation of transgranular fracture, which in turn improves the mechanical properties via strengthening and toughening. On the other hand, in case of Si3N4/Si2N2O nanocomposites, intragranular microstructure reduces the possibility of bridging, pulling out, and crack deflection, thereby leading to the deterioration of strength and toughness. Based on these results, we can conclude that the formation of intragranular microstructure does not necessarily improve the mechanical properties in all kinds of materials. Rather, the effect of intragranular microstructure on the mechanical properties of nanocomposites is related to the strengthening and toughing mechanism of matrix materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.