Abstract

A hot dip aluminising process was carried out with a 1mm steel sheet dipped into the Al-10at.% Si melt in an automatic hot-dip simulator. When steel and liquid aluminium are in contact with each other, a thin intermetallic compound (IMC) is formed between the steel and the aluminium. The analysis and identification of the formation mechanism of the IMC is needed to manufacture the application products. Energy dispersive X-ray spectroscopy (EDX) and electron probe microanalysis (EPMA) are normally used to identify the phases of IMC. In the Al-Fe-Si system, numerous compounds with only slight differences in composition are formed. Consequently, EDX and EPMA are insufficient to confirm exactly the thin IMC with multiphases. In this study, transmission electron microscopy (TEM) analysis combined with EDX was used. The TEM sample was prepared with focused ion beam (FIB) sampling. The FIB lift-out technology is used to slice a very thin specimen with minimum contamination for TEM analysis. It is clearly shown that the IMC consists of Al-27 at. % Fe-10 at. % Si and is identified as Al8Fe2Si with a hexagonal unit cell (space group P63/mmc). The cell parameters are a= 1.2404nm and c= 2.6234nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.