Abstract

In this paper we analyse the computational aspects of a numerical method for solving the Electric Field Integral Equation (EFIE) for the analysis of the interaction of electromagnetic signals with thin-wires structures. Our interest concerns with the design of an efficient parallel implementation of this numerical method which helps physicist to solve the Electric Field Integral Equation for very complex and large thin-wires structures. The development of this parallel implementation has been carried out on distributed memory multiprocessors, with the use of the parallel programming library MPI and routines of PETSc (Portable, Extensible Toolkit for Scientific Computation). These routines can solve sparse linear systems in parallel. Appropriate data partitions have been designed in order to optimize the performance of the parallel implementation. A parameter named relative efficiency has been defined to compare two parallel executions with different number of processors. This parameter allows us to better describe the superlinear performance behavior of our parallel implementation. Evaluation of the parallel implementation is given in terms of the values of the speep-up and the relative efficiency. Moreover, a discussion about the requirements of memory versus the number of processors is included.It will be shown that memory hierarchy management plays a relevant role in the performance of this parallel implementation.KeywordsParallel ImplementationElectromagnetic SignalParallel CodeSparse Linear SystemLinear Equation SystemThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.