Abstract
Sharp changes in the vertical stiffness levels of a track can increase train and infrastructure deterioration to the point where there is a serious risk of a derailment. Major overloading and unloading forces are created between the different track and vehicle components. This phenomenon has grown in importance as the operational speeds of trains have increased with the expansion of high-speed lines. In order to solve this problem a method has to be found to smooth the changes in vertical stiffness levels along the track. In the present paper, the combination of transition regions and under- sleeper pads (USPs) has been studied. The research has been performed by means of a dynamic vehicle–track interaction model created by synthesizing a series of sub-models of individual effects. The analysed variables allow various track configurations, train travelling speeds and the stiffness of the USPs to be investigated. The obtained results show that combining transition zones with USPs pads allows more homogeneous vertical stiffness levels to be achieved along the tracks which results in improved dynamic behaviour of the vehicle–track system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.