Abstract

Laser-induced incandescence (LII) is a powerful diagnostic technique allowing quantifying soot emissions in flames and at the exhaust of combustion systems. It can be advantageously coupled with modeling approaches to infer information on the physical properties of combustion-generated particles (including their size), which implies formulating and solving balance equations accounting for laser-excited soot heating and cooling processes. Properly estimating soot diameter by time-resolved LII (TiRe-LII), nevertheless, requires correctly evaluating the thermal accommodation coefficient driving the energy transferred by heat conduction between soot aggregates and their surroundings. To analyze such an aspect, an extensive set of LII signals has been acquired in a Diesel spray flame before being simulated using a refined model built upon expressions accounting for soot heating by absorption, annealing, and oxidation as well as cooling by radiation, sublimation, conduction, and thermionic emission. Within this framework, different conduction sub-models have been tested while a corrective factor allowing the particle aggregate properties to be taken into account has also been considered to simulate the so-called shielding effect. Using a fitting procedure coupling design of experiments and a genetic algorithm-based solver, the implemented model has been parameterized so as to obtain simulated data merging on a single curve with experimentally monitored ones. Eventually, values of the thermal accommodation coefficient have been estimated with each tested conduction sub-model while the influence of the aggregate size on the so-inferred has been analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call