Abstract

For the complexity of the internal microstructure of porous aluminum foam, on the basis of Rayleigh-Kirchhoff circular tube model, taking viscosity loss and thermal transmission, the paper establishes a simplified theoretical model for sound absorption properties of aluminum foam. The paper also calculates and analyzes the influence of Static flow resistance on the sound absorption properties in the rigidity and cavity backing. The results show that the peak frequency moves to lower with the increasing of the thickness of the air layer. What’s more, there is a direct corresponding relation between flow resistance and the best sound absorption frequency range of aluminum foam. In a reasonable range of flow resistance value, the capability of sound absorption reach optimal, Aluminum Foam won’t have fine sound absorption capability if the value of flow resistance is too big or small.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call