Abstract

We study the effect of the selection of diffeomorphic normalization in the performance of Spasov's deep-learning system for the problem of progressive MCI vs stable MCI discrimination. We considered different degrees of normalization (no, affine and non-rigid normalization) and two diffeomorphic registration methods (ANTS and BL PDE-LDDMM) with different image similarity metrics (SSD, NCC, and lNCC) yielding qualitatively different deformation models and quantitatively different degrees of registration accuracy. BL PDE-LDDMM NCC achieved the best performing accuracy with median values of 89%. Surprisingly, the accuracy of no and affine normalization was also among the highest, indicating that the deep-learning system is powerful enough to learn accurate models for pMCI vs sMCI discrimination without the need for normalization. However, the best sensitivity values were obtained by BL PDE-LDDMM SSD and NCC with median values of 97% and 94% while the sensitivity of the remaining methods stayed under 88%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call