Abstract

A series of deletions from the carboxyl terminus of the 23-kD subunit of the photosynthetic oxygen-evolving complex OE23 revealed that these truncations result in various degrees of inhibition of translocation across thylakoid membranes and their subsequent assembly to the oxygen-evolving complex. Import of in vitro translated precursors across the chloroplast envelopes was not inhibited by these truncations. Time-course studies of the import of truncated OE23 precursors into intact chloroplasts revealed that the stromal intermediate was subsequently translocated into the thylakoid lumen, where it was processed to a smaller size and rapidly degraded. In contrast to the full-length OE23 intermediate, the truncated intermediate forms that accumulated in the stroma as a result of de-energization of thylakoid membranes could be found associated with the membrane rather than free in the stroma. Protease digestion experiments revealed that the deletions evidently altered the folded conformation of the protein. These results suggest that the carboxyl-terminal portion of the OE23 precursor is important for the maintenance of an optimal structure for import into thylakoids, implying that the efficient translocation of OE23 requires the protein to be correctly folded. In addition, the rapid degradation of the truncated forms of the processed OE23 within the lumen indicates that a protease (or proteases) active in the lumen can recognize and remove misfolded polypeptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.