Abstract

This paper presents the results of the research on the structure and thermal properties of materials made from fly ash based on high-density polyethylene (HDPE). Composites based on a polyethylene matrix with 5, 10, and 15 wt% fly ash from hard coal combustion content were examined. Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) was used to identify characteristic functional groups present in the chemical structure of polyethylene and the composites based on its matrix. Structural analysis was performed using X-ray diffraction (XRD), a differential scanning calorimeter (DSC), and microscopic examinations. Mechanical properties were also examined. Analysis of the thermal effect values determined by the DSC technique, XRD, and FTIR-ATR allowed the evaluation of the crystallinity of the tested materials. Polyethylene is generally considered to be a two-phase system consisting of crystalline and amorphous regions and is a plastic characterized by a significant crystalline phase content. Based on the FTIR-ATR spectra, DSC curves, and XRD, the effect of the filler and the changes occurring in the materials studied resulted in a decrease in the degree of crystallinity and a change in the melting point and crystallization temperature of the polymer matrix were established. Microscopic examinations were carried out to analyze the microstructure of the composites to collect information on the distribution and shape of the filler particles, indicating their size and distribution in the polymer matrix. Furthermore, the use of scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDS) allowed for the microanalysis of the chemical composition of the filler particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.