Abstract

The resulting dynamic loading on machines, the environment and humans generated by vibration and noise is dependent on the vibro-insulating components and the quality of resilient materials used in the mounting of these components. Well-designed vibration isolation of vibrating sources can effectively reduce the transmission of vibro-acoustic energy into supporting and surrounding structures. Based on frequency spectrum, the vibro-isolation efficiency of various vibro-insulating components and their resilient materials is analysed. The solution of this problem is based on theoretical knowledge and methodology of the transmission of vibration-sound waves and measurement of the machines involved. Measurements of vibration at the sources and along the path of transmission, as well as sound measurements, were performed for different vibro-isolators to compare real results with theory. Measured components include; isolation of a recirculation fan in a heating plant, air-conditioning unit, and combustion engine of a passenger vehicle. For the detection of the vibro-acoustic energy the vibration and sound were measured and FFT analysis was applied. Finally, this paper suggests measures which can be taken to reduce undesirable vibro-acoustic energy on machines, the environment and bystanders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call