Abstract

In Colombia alone, 12.6 million bags of green coffee are produced, but at the same time, 784,000 tons of waste biomass are dumped in open fields, of which only 5% is recovered or used, and 10 million tonnes of coffee emit 28.6 million tonnes of CO2 eq annually. This presents a worrying dilemma, and the need to develop a technology to transform the waste into usable products is increasing. As a response to this, the valorization of coffee waste was explored through the production of biochar and platform chemicals by implementing a set of hydrothermal experiments with different biomass/water ratios (1:5, 1:10, 1:20, 1:40), particle sizes (0.5, 1, 2, 5 mm), stirring rates (5000 and 8000 rpm), and catalysts (H2SO4, NaHCO3 and CH3COOH) at 180, 220, and 260 °C in a batch reactor with autogenous pressure. Notably, the smaller B:W ratios of 1:20 and 1:40, as well as smaller particle sizes of 0.5 and 1 mm, yielded higher amounts of platform chemicals, while stirring showed minimal influence. CH3COOH significantly enhanced the process compared to other catalysts. The biochar was characterized as anthracite, and this obtaining of coal-like materials from biomass itself represents a remarkable feat. Said anthracite presented little to no variation in physical parameters, while catalysts induced functionalization. By optimizing factors like B:W ratio, particle size, and catalyst application, valuable insights have been gained into enhancing the yield of platform chemicals and quality of biochar from coffee waste. The findings not only contribute to sustainable waste management practices but also highlight the importance of exploring innovative solutions for utilizing agricultural by-products effectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.