Abstract

Panoramic annular lens (PAL) is a kind of the specific wide angle lenses which is widely applied in panoramic imaging especially in aerospace field. As we known, to improve the aerodynamic performance of the aircraft, conformal dome, which notably reduces the drag of an aircraft, is also functioning as an optical window for the inbuilt optical system. However, there is still no report of the specific analysis of the imaging performance of PAL with conformal dome, which is imperative in its aerospace-related applications. In this paper, we propose an analysis of the imaging performance of a certain PAL with various conic conformal domes. Working in visible wavelength, the PAL in our work observes 360° surroundings with a large field of view (FOV) ranging from 30° ~105° . Meanwhile, various thicknesses, half-vertex angles, materials of the conic dome and the central distances between the dome and PAL are considered. The imaging performances, mainly indicated by modulation transfer function (MTF) as well as RMS radius of the spot diagram, are systematically compared. It is proved that, on the contrary to the general cases, the dome partly contributes to the imaging performance of the inbuilt PAL. In particular, with a conic conformal dome in material of K9 glass with a half-vertex angle of 25° and a thickness of 6mm, the maximum MTF at 100lp/mm could be improved by 6.68% with nearly no degeneration of the minimum MTF, and the RMS radius could be improved by 14.76% to 19.46% in different FOV. It is worth to note that the PAL is adaptive to panoramic aerospace applications with conic or quasi-conic conformal dome and the co-design of both PAL and the dome is very important.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.