Abstract

A mathematical model is presented that describes the movement of gas in a direct-flow cyclone. The equations of motion of the gas phase were solved and profiles for the tangential and axial components of gas velocity were derived based on them. The results obtained are compared with the results of numerical simulation. The latter was carried out in the FlowVision software using the SST turbulence model. Via numerical calculations the change in the tangential and axial components of the gas velocity was determined at distances of 110, 150, 200, and 250 mm from the plate turbulator, or cyclone swirler.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.