Abstract

The ultraviolet spectra of the stars RY Tau and HD 115043 from the Hubble Space Telescope are analyzed. RY Tau belongs to the classical T Tauri stars, while HD 115043 is a young (t~3×108 years), chromospherically active star. The most intense emission lines were identified, and their fluxes were measured. Low-resolution spectra of RY Tau and HD 115043 in the wavelength range 1160–1760 A exhibit almost the same set of emission lines. However, first, the luminosity of RY Tau in these lines is approximately a factor of 300 higher than that of HD 115043, and, second, the relative line intensities differ greatly. The intensity ratio of the C IV λ1550, Si IV λ1400, and NV λ1240 doublet components is close to 1: 2 in the spectra of both stars. Judging by the continuum energy distribution, the spectral type of RY Tau is later than that of HD 115043. Synchronous flux variability in the C IV λ1550 and He II λ1640 lines in a time of ~20 min was detected in RY Tau. The flux rise in these lines was accompanied by a redshift of the intensity peak in the profiles by~50 km s−1. Intermediate-resolution spectra are used to study line profiles in the spectrum of RY Tau. In particular, the profiles of (optically thin) Si III]λ1892 and C III]λ1909 lines were found to be asymmetric and about 300 km s−1 in width. The (optically thick) C IV λ1550 doublet lines have similar profiles. The Mg II λ2800 doublet lines are also asymmetric, but their shape is different: they consist of a broad (≃750 km s−1 at the base) emission component on which an interstellar absorption line shifted from the line symmetry center by about 20 km s−1 is superimposed. The intensity ratio of the Mg II λ2800 doublet components is≃1.4. Whether there are molecular hydrogen lines in the spectrum of RY Tau is still an open question. It is shown that the emission lines in the ultraviolet spectrum of RY Tau cannot originate in a hydrostatically equilibrium chromosphere. It is argued that quasi-steady accretion of circumstellar matter is responsible for the emission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call