Abstract
On the basis of the density-functional theory, cluster models of the adsorption of oxygen atoms on aluminum oxide are constructed and the corresponding potential-energy surface is calculated. Quantum-mechanical calculations showed that it is necessary to take into account the angular dependence of the potential-energy surface and the relaxation of the surface monolayers. Using this surface in molecular dynamics calculations made it possible to obtain the probabilities of the heterogeneous recombination of oxygen atoms on the α-Al2O3 surface, which are in good agreement with experimental data. The calculations performed substantially decrease the amount of experimental investigations necessary reliably to describe the heterogeneous catalysis on promising reusable heat shield coatings for analyzing heat transfer during spacecraft entry into the atmosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.