Abstract

Flow cytometry was used to measure the nuclear DNA content of Eucalyptus globulus Labill. somatic and zygotic embryos and leaves in order to determine if somatic embryogenesis induces DNA content and ploidy changes in this species. Mature zygotic embryos derived from open-pollination orchard families were collected from a location in the centre of Portugal. One group was kept for nuclear DNA content and ploidy analysis, and the other group was used for establishing embryogenic cultures. Mature zygotic embryos were grown on Murashige and Skoog (MS) medium supplemented with 3% (w/v) sucrose and 3 mg l(-1) alpha-naphthaleneacetic acid (NAA) for 3 weeks and then transferred to MS medium without growth regulators. Globular somatic embryos from approximately 8-month-old embryogenic cultures were used in the assay. DNA ploidy levels and the nuclear DNA content of mature zygotic embryos, somatic embryos and leaves from the mother field tree were determined using flow cytometry combined with propidium iodide staining. Zygotic embryos had a nuclear DNA content of 1.32 pg/2C, somatic embryos had a nuclear DNA content of 1.39 pg/2C and leaves from the field tree had a nuclear DNA content of 1.40 pg/2C. The values estimated for the somatic embryos and mother plant did not differ statistically from each other (P < or = 0.05), but both differed from those of the zygotic embryos (P < or = 0.05). These results clearly indicate that no changes were induced during the embryogenic process. However, the differences found between the field plants and zygotic embryos did suggest that some aspects must be evaluated carefully, as propidium iodide fluorescence may potentially be influenced by the presence of secondary compounds (e.g. anthocyanins, tannins) in E. globulus somatic embryos and mature leaves. Therefore we believe that the somatic embryogenesis methodology used did not induce major genetic changes in the somatic embryos and that our primary goal of "true-to-type" propagation was assured.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call