Abstract

<abstract><p>In this article, we have introduced the diarrhea disease dynamics in a varying population. For this purpose, a classical model of the viral disease is converted into the fractional-order model by using Atangana-Baleanu fractional-order derivatives in the Caputo sense. The existence and uniqueness of the solutions are investigated by using the contraction mapping principle. Two types of equilibrium points i.e., disease-free and endemic equilibrium are also worked out. The important parameters and the basic reproduction number are also described. Some standard results are established to prove that the disease-free equilibrium state is locally and globally asymptotically stable for the underlying continuous system. It is also shown that the system is locally asymptotically stable at the endemic equilibrium point. The current model is solved by the Mittag-Leffler kernel. The study is closed with constraints on the basic reproduction number $ R_{0} $ and some concluding remarks.</p></abstract>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call