Abstract

The focal characteristics of refractive cylindrical lenses made of anisotropically dielectric material (uniaxial crystal) are analysed based on rigorous electromagnetic theory and the boundary element method. The performances of the lenses with different f numbers are appraised for both incident waves of the TE (transverse electric) and TM (transverse magnetic) polarizations. Numerical results show that the focal performance of this kind of lens for the TE polarization and the TM polarization of incident light wave is a difference, in particular, different focal lengths, owing to the anisotropy of the material. However, for the conventional isotropic lens, the focal features for both the TE and TM polarizations are the same. It is anticipated that this new kind of lens proposed for the first time may serve as a light switching device with high speed used in the micro-optical communication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call