Abstract

In contrast to the concurrent mixer-settler, the interaction between the mixing and settling chambers have to be taken into account in the simulation of the countercurrent mixer-settler, and no work has been reported for this equipment. In this work, a three-phase flow model based on the Eulerian multiphase model, coupled with a sliding mesh model is proposed for a countercurrent mixer-settler. Based on this, the dispersed phase distribution, flow pattern, and pressure distribution are investigated, which can help to fill the gap in the operation mechanism. In addition, the velocity vector distribution at the phase port shows an intriguing phenomenon that two types of vectors with opposite directions are distributed on the left and right sides of the same plane, which indicates that the material exchange in the mixing and settling chambers is simultaneous. Analysis of this variation at this location by a fast Fourier transform (FFT) method reveals that it is mainly influenced by the mixing chamber and is consistent with the main period of the outlet flow fluctuations. Therefore, by monitoring the fluctuation of the outlet flow and then analyzing it by the FFT method, the state of the whole tank can be determined, which makes it promising for the design of control systems for countercurrent mixer-settlers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.