Abstract

In this paper, fractional order derivative, fractal dimension and spectral dimension are introduced into the seepage flow mechanics to establish the relaxation models of non-Newtonian viscoelastic fluids with the fractional derivative in fractal reservoirs. A new type integral transform is introduced, and the flow characteristics of non-Newtonian viscoelastic fluids with the fractional order derivative through a fractal reservoir are studied by using the integral transform, the discrete Laplace transform of sequential fractional derivatives and the generalized Mittag-Leffler function. Exact solutions are obtained for arbitrary fractional order derivative. The long-time and short-time asymptotic solutions for an infinite formation are also obtained. The pressure transient behavior of non-Newtonian viscoelastic fluids flow through an infinite fractal reservoir is studied by using the Stehfest’s inversion method of the numerical Laplace transform. It is shown that the clearer the viscoelastic characteristics of the fluid, the more the fluid is sensitive to the order of the fractional derivative. The new type integral transform provides a new analytical tool for studying the seepage mechanics of fluid in fractal porous media.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.