Abstract

The internal flow problem of a reversible pump turbine restricts its safe and stable operation. Among them, the influence of the guide vane on the internal flow field is very crucial. The flow–head relationship is of great significance in the performance stability of the unit. In this study, the performance and flow field characteristics under different flow rates were analyzed for different guide vane opening angles. By comparing the results of the model test and computational fluid dynamics simulation, it was found that the simulation can well predict the energy characteristics and flow field distribution. There is an optimal efficiency range under each guide vane opening angle. The increase or decrease in flow will reduce the efficiency. For the head, it will decrease significantly with a decrease in the flow rate, especially when it deviates seriously from the optimal efficiency region. From the contour of the flow energy loss and the vector of velocity, it can be seen that the head drop is closely related to the flow blockage caused by the difference between the runner incoming flow direction and the installation direction of the guide vane. This study deeply revealed the valley and peak of head variation under different guide vane opening conditions. It can provide technical support for improving the wide range operation stability of a pump turbine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.