Abstract

ABSTRACTSyndromic craniosynostosis caused by mutations in FGFR2 is characterised by developmental pathology in both endochondral and membranous skeletogenesis. Detailed phenotypic characterisation of features in the membranous calvarium, the endochondral cranial base and other structures in the axial and appendicular skeleton has not been performed at embryonic stages. We investigated bone development in the Crouzon mouse model (Fgfr2C342Y) at pre- and post-ossification stages to improve understanding of the underlying pathogenesis. Phenotypic analysis was performed by whole-mount skeletal staining (Alcian Blue/Alizarin Red) and histological staining of sections of CD1 wild-type (WT), Fgfr2C342Y/+ heterozygous (HET) and Fgfr2C342Y/C342Y homozygous (HOM) mouse embryos from embryonic day (E)12.5-E17.5 stages. Gene expression (Sox9, Shh, Fgf10 and Runx2) was studied by in situ hybridisation and protein expression (COL2A1) by immunohistochemistry. Our analysis has identified severely decreased osteogenesis in parts of the craniofacial skeleton together with increased chondrogenesis in parts of the endochondral and cartilaginous skeleton in HOM embryos. The Sox9 expression domain in tracheal and basi-cranial chondrocytic precursors at E13.5 in HOM embryos is increased and expanded, correlating with the phenotypic observations which suggest FGFR2 signalling regulates Sox9 expression. Combined with abnormal staining of type II collagen in pre-chondrocytic mesenchyme, this is indicative of a mesenchymal condensation defect. An expanded spectrum of phenotypic features observed in the Fgfr2C342Y/C342Y mouse embryo paves the way towards better understanding the clinical attributes of human Crouzon–Pfeiffer syndrome. FGFR2 mutation results in impaired skeletogenesis; however, our findings suggest that many phenotypic aberrations stem from a primary failure of pre-chondrogenic/osteogenic mesenchymal condensation and link FGFR2 to SOX9, a principal regulator of skeletogenesis.

Highlights

  • Syndromic craniosynostosis can be caused by mutations in the FGFR2 gene and is inherited in an autosomal dominant manner (Wilkie 2005)

  • Syndromic craniosynostosis caused by mutations in FGFR2 is characterised by developmental pathology in both endochondral and membranous skeletogenesis

  • We investigated bone development in the Crouzon mouse model (Fgfr2C342Y) at pre- and post-ossification stages to improve understanding of the underlying pathogenesis

Read more

Summary

Introduction

Syndromic craniosynostosis can be caused by mutations in the FGFR2 gene and is inherited in an autosomal dominant manner (Wilkie 2005). One of the most common syndromes is Crouzon syndrome, where patients are characterised by coronal craniosynostosis, midfacial hypoplasia and proptosis, generally without limb defects (Reardon et al 1994). Especially those with limb defects are often described as Pfeiffer syndrome (Rutland et al 1995). Less common features include hearing loss, tracheal cartilaginous sleeve, butterfly vertebrae and cleft palate (Helman et al 2014). Some of these features can be seen in patients with Apert syndrome (AS), which is caused by mutations in FGFR2 (Wilkie et al 1995)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.