Abstract

The origins of the complex Fe 2p X-Ray Photoelectron Spectra (XPS) of hematite (α-Fe2O3) are analyzed and related to the character of the bonding in this compound. This analysis provides a new and novel view of the reasons for XPS binding energies (BEs) and BE shifts, which deepens the current understanding and interpretation of the physical and chemical significance of the XPS. In particular, many-body effects are considered for the initial and the final, 2p-hole configuration wavefunctions. It is shown that a one-body or one-configuration analysis is not sufficient and that the many-body, many-determinantal, and many-configurational character of the wavefunctions must be taken into account to describe and understand why the XPS intensity is spread over an extremely large number of final 2p-hole multiplets. The focus is on the consequences of angular momentum coupling of the core and valence open shell electrons, the ligand field splittings of the valence shell orbitals, and the degree of covalent mixing of the Fe(3d) electrons with the O(2p) electrons. Novel theoretical methods are used to estimate the importance of these various terms. An important consequence of covalency is a reduction in the energy separation of the multiplets. Although shake satellites are not considered explicitly, the total losses of intensity from the angular momentum multiplets to shake satellites is determined and related to the covalent character of the Fe-O interaction. The losses are found to be the same for Fe 2p1/2 and 2p3/2 ionization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call