Abstract

Autonomously folding beta-hairpins (two-strand antiparallel beta-sheets) have become increasingly valuable tools for probing the forces that control peptide and protein conformational preferences. We examine the effects of variations in sequence and solvent on the stability of a previously designed 12-residue peptide (1). This peptide adopts a beta-hairpin conformation containing a two-residue loop (D-Pro-Gly) and a four-residue interstrand sidechain cluster that is observed in the natural protein GB1. We show that the conformational propensity of the loop segment plays an important role in beta-hairpin stability by comparing 1 with (D)P--> N mutant 2. In addition, we show that the sidechain cluster contributes both to conformational stability and to folding cooperativity by comparing 1 with mutant 3, in which two of the four cluster residues have been changed to serine. Thermodynamic analysis suggests that the high loop-forming propensity of the (D)PG segment decreases the entropic cost of beta-hairpin formation relative to the more flexible NG segment, but that the conformational rigidity of (D)PG may prevent optimal contacts between the sidechains of the GB1-derived cluster. The enthalpic favorability of folding in these designed beta-hairpins suggests that they are excellent scaffolds for studying the fundamental mechanisms by which amino acid sidechains interact with one another in folded proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.