Abstract

This article analyses the exothermic reaction of flame ignition in the combustion chamber of a gas turbine unit, which is characteristic of combustion chambers operating on traditional hydrocarbon fuels. The combustion of gases as an explosive process in confined and semi-enclosed areas remains a poorly understood section of thermal physics. Without a detailed review of the physical and chemical processes taking place in the combustion chamber, it cannot be said whether the gas turbine unit will run sustainably. It is also important to know what combustion modes are in principle possible after a loss of stability in the combustion chamber in order to take action against this in advance. To describe flame ignition and quenching in the flow of the fuel–air mixture through a combustion chamber, a system of differential conservation equations of energy and reactive species supplemented with the equation of state is used. Nonstationary combustion processes in gas-turbine engines were studied, and flame ignition and blow-off were determined by the heat balance and by the continuity of chemical processes. Calculation methodologies for various operating modes of the combustion chamber of a gas turbine unit are developed and realized. The results of the calculations that were carried out are presented with graphical interpretation and with their analysis provided in sufficient detail. Based on this analysis, recommendations are then provided. From the graphs, it can be observed that the combustion chamber of a gas turbine unit reaches its maximum limit of stable operation at the optimum value of the reduced flow velocity in the openings of the air supply to the combustion and the mixing zones of the flame tube (λOC)opt = 0.22 when the fuel–air mixture is at maximum depletion, ensuring that combustion does not stop and flame failure does not occur. The topic of this article relates to the intensification of hydrocarbon fuel combustion and the technological improvement of combustion chambers in gas turbine units. This topic is of exceptional importance and relevance, emphasizing its significance. The purpose of this work is to develop and implement a methodology for calculating various modes of operation of the combustion chamber of a gas turbine unit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.