Abstract

Abstract The thermodynamic response of the Prometheus reactor chamber was analyzed and, from this analysis, a simplified thermodynamic response model was developed for parametric studies on this conceptual reactor design. This paper discusses the thermodynamic response of the cavity gas and models the condensation/evaporation of vapor to and from the first wall. Models of X-ray attenuation and ion slowing down are used to estimate the fraction of the pellet energy that is absorbed in the vapor. It was found that the gas absorbs enough energy to become partially ionized. To treat this problem, methods developed by Zel'dovich and Raizer are used in modeling the internal energy and the radiative heat flux of the vapor. From this analysis, RECON was developed, which runs with a relatively short computational time, yet retains enough accuracy for conceptual reactor design calculations. The code was used to determine whether the reactor designs could meet the stringent mass density limits that are placed on them by the physics of beam propagation through matter. RECON was also used to study the effect that the formation of a local dry spot would have on the first wall of the reactor. It was found that, for a typical reactor lifetime of 30 years, the first wall could not have a dry spot over any one section for more than 15.5 min for the laser driver design and 4.5 min for the heavy ion driver design. These times are relatively short, which implies that there is a need to keep the liquid film attached at all times.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call