Abstract

As the articulated trucks are mainly used for long distance transportations, the design of the suspension system became a major concern and a research hotspot not only for ride comfort and driving safety but also for energy consumption. Therefore, the objective of this study is to conduct a comprehensive parametrical–based conflict analysis between the ride comfort and road holding together with the potential power of the shock absorbers. The simulation analysis is performed using a 23 degree-of-freedom full truck semi-trailer mathematical model with random road surface model. The bounce and combined excitation modes for the truck model are applied to present the pro and contra of the simplified and realistic analysis. The bounce mode is applied for a road Class C and truck driving speed of 20 m/s, while the combined mode is performed with the same truck-speed but considering a Class C road for the left track and Class D road for the right track considering the time delay between the truck axles. The truck dynamics including the mean potential power, average dynamic tire load and bounce, and pitch and roll accelerations is comprehensively combined in the conflict analysis–based suspension and driving parameters. The obtained simulation results showed that the articulated truck suspension should be designed considering a realistic excitation condition. In contrast to the bounce mode, under the combined road input, the tractor ride quality and road handling performances are improved when a heavily damped suspension is considered. Furthermore, the otherwise dissipated energy through the damping events can reach an overall value between 2 and 4 kW.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.