Abstract

The operation of large-scale telecommunication networks requires energy in different forms. Besides fossil fuels, district heating, and fuels to operate a vehicle fleet, the major energy demand for telecom operator networks is that of electricity. Electricity is needed to power the telecom network itself, the data center equipment, and to supply power to the equipment in offices and workspaces--where the predominant electricity share is consumed by the classic telecom operator network. A large share of this telecom network electricity is currently consumed by legacy network parts inherited from the telephone network era, followed by mobile and fixed access networks with a multitude of distributed active elements for achieving countrywide coverage. Aggregation, core, and optical transport networks only consume modest shares of the overall telecommunication network electricity. The network equipment is accommodated in different classes of network production sites ranging from large indoor central offices to small outdoor sites. The higher their number is, the smaller the respective sites are. Smaller sites essentially provide coverage over large geographical areas and consume only small amounts of electricity per site; however, when combined, their share in total network electricity becomes major. Networking trends are driven by changing user and usage demands and the need to improve the network production efficiency: An example of the former in the wired network is the installation of smaller outdoor network sites to satisfy the increasing user demand for higher bit rate in a value-oriented access network rollout. A prominent example for the latter is the network platform consolidation in the transition toward all-IP networks. Results show that the multitude of small active access network sites for hybrid copper---fiber access systems require increasing amounts of energy for increasing access bit rates--which changes when using the latest copper access technologies or pure fiber-based passive optical access networks. Network platform consolidation improves the network energy efficiency by switching off legacy network platforms and enabling improved degrees of load-adaptive operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call