Abstract

Significant improvements in deformation resistance and ductility of metals are observed in the electrically assisted forming (EAF) process. Both electroplastic effect (EPE) induced by electric current and thermal effect associated with Joule heating have been proposed to explain the phenomenon. However, there are still arguments in the contribution of the EPE in EAF process. In this paper, both electrically assisted tension tests (EAT) and thermally assisted tension tests (TAT) were conducted on SS304 specimens at the same temperature. The existence of EPE is investigated, and the contribution of EPE is also distinguished with thermal effect numerically by considering the initial yield stress, dislocation hardening, and martensite phase transformation. It is shown when the temperature is around 34 °C, the electric current of 50 A/mm2 in EAT induces additional stress reduction of 16% in the short-range internal stress (effective stress) involved in the initial yield stress and volume reduction of 45.2% in martensite formation compared with results in TAT. However, the effect is not obvious for the cases of 100 A/mm2 and 150 A/mm2 when the temperature is above 100 °C. By comparing the storage coefficient and recovery coefficient of dislocation in EAT and TAT, it indicates that electric current has no additional activation effect on dislocation movement of SS304.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call