Abstract

In this work, we aim to find physical evidence demonstrating the crucial role that the effective concentration of antioxidants (AOs) present at the interfacial region of emulsions has in controlling the inhibition of the lipid oxidation reaction. We prepared a series of antioxidants of different hydrophobicities derived from chlorogenic and protocatechuic acids. We first monitored, in intact emulsions, the (sigmoidal) production of conjugated dienes and determined the corresponding induction times, tind. Independently, we determined the effective concentrations of the antioxidants in the same intact emulsions. Results show that both the length of the induction periods and the antioxidant interfacial concentrations parallel each other, with a maximum at the octyl-dodecyl derivatives. The ratio between the interfacial antioxidant concentrations and the induction periods remains constant for all AOs in the same series, so that the rates of initiation of lipid oxidation are the same regardless of the hydrophobicity of the antioxidant employed. The constancy in the rate of initiation provides strong experimental evidence for a direct relationship between interfacial concentrations and antioxidant efficiencies. Results suggest new possibilities to investigate lipid peroxidation under non-forced conditions and are of interest to formulators interested in preparing emulsions with antimicrobial properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.