Abstract

A theoretical study has been conducted to investigate the effects of mass transfer on heat transfer in moisture exchange across a membrane and a mathematical model describing the heat transfer process with consideration of the heat of sorption was established. A dimensionless variable, Ψ =JLλ /δ (T10−T20), which controls the effect of the heat of sorption on the heat transfer in membrane process, was obtained through theoretical analysis, and the effects of Ψ on the heat transfer process were analyzed. Results showed that in the case that the temperature gradient and mass transfer are in the same direction, the effective heat flux changes the direction at Ψ=1. For Ψ 1, the overall effect of the heat and mass transfer is that the effective heat flux points from low to high temperature sides and the total thermal resistance decreases with increasing the mass flux or reducing the temperature difference. In the case that the temperature gradient and mass transfer are in the opposite directions, the existence of the heat of sorption acts to enhance the heat transfer from high to low temperature sides, causing a reduced total thermal resistance, and the greater the mass flux or the smaller the temperature difference, the smaller the total thermal resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.