Abstract

Nitinol has many applications in the medical device industry, however the large amount of nickel, a known allergen and carcinogen remains a serious concern. Studies have already shown that nickel ions induce the differential expression of a range of genes, including cell adhesion molecules. This study sought to determine the level of nickel ions released from nitinol wires that had been surface treated by etching and mechanically polishing or etching and pickling compared to untreated wires and determine the biological impact of the wires on human umbilical vein endothelial cells (HUVECs) at the transcriptional level by real-time PCR. The four different wire types were incubated in media and the amount of nickel eluted after 24, 48 and 72 h was determined. HUVECs were then cultured and incubated with the four different wire types for 24 h. Cells were harvested, RNA isolated and real-time PCR was carried out to measure the expression levels of ICAM-1, VCAM-1 and E-selectin, three known inflammatory mediators, compared to control cells. E-selectin, a marker of endothelial cell injury and activation was found to be significantly up-regulated in cells incubated with wires that released the highest amount of nickel ions. Nickel ions are released from nitinol wires with certain surface characteristics and these ions have a biological effect on HUVECs in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.