Abstract

In this article, we perform an entropy generation analysis for the micro channel heat sink applications where the flow of fluid is actuated by combined influences of applied pressure gradient and electric field under electrical double layer phenomenon. The upper and lower walls of the channels are kept at different constant temperatures. The temperature-dependent viscosity of the fluid is considered and hence the momentum equation and energy equations are coupled in this study. Also, a hydrodynamic slip condition is employed on the viscous dissipation. For complete analysis of the entropy generation, we use a perturbation approach with lubrication approximation. In this study, we discuss the results depicting variations in the velocity and temperature distributions and their effect on local entropy generation rate and Bejan number in the system. It can be summarized from this analysis that the enhanced velocity gradients in the flow field due to combined effect of temperature-dependent viscosity and Joule heating and viscous dissipative effects, leads to an enhancement in the local entropy generation rate in the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.