Abstract
The effects from lateral variations of irregular terrain on the propagation of radio waves are considered by the representation of the vector fields in terms of two scalar Hertz potentials in spherical coordinates. The combination of three-dimensional parabolic equations for these potentials with an impedance boundary condition for the ground, followed by a transformation of variables, will define a boundary-condition problem characterized by equations displaying coefficients that depend on the terrain height function and its partial derivatives. The problem solution through the Crank-Nicolson scheme will lead to a sparse system of linear equations, which will be solved by a direct method. The resulting numerical model will be applied to test cases to show similar features to those from examples described in the literature, taken as references for validation purposes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.