Abstract

Temperature and pH influence the conformation of the whey protein β-lactoglobulin (β-Lg) monomer, dimer, and octamer formation, its denaturation, and solubility. Most hydrolyses have been reported at trypsin (EC 3.4.21.4) optimum conditions (pH 7.8 and 37 °C), while the hydrolysate mass spectrometry was largely limited to peptides with <4 kDa. There are few reports on trypsin peptide release patterns away from optimum. This work investigated the influence of alkaline (8.65 and 9.5) and optimum (7.8) pH at different temperatures (25, 37.5, and 50 °C) on β-Lg (7.5%, w/v) hydrolysis. Sample aliquots were drawn out before the addition of trypsin (blank sample) and at various time intervals (15 s to 10 min) thereafter. Matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF-MS/MS) was used to monitor peptide evolution over time with the use of two matrixes: α-cyano-4-hydroxycinnamic acid (HCCA) and 2.5-dihydroxyacetophenone (DHAP). Mass analysis showed that the N- and C-terminals (Lys(8)-Gly(9), Lys(100)-Lys(101), Arg(124)-Thr(125), Lys(141)-Ala(142), and Arg(148)-Leu(149)) of β-Lg were cleaved early (15 s) implying the ease of trypsinolysis at the exposed terminals. Hydrolyses at 25 °C and pH 7.8 as well as at 50 °C and pH 9.5 were slowed down and ordered. Nonspecific chymotrypsin-like behavior occurred more at higher temperatures (50 °C) than at lower ones (25 and 37.5 °C). In addition to our earlier work in the acid pH region, it can be concluded that there is potential for controlled hydrolysis outside the trypsin optimum, where different target peptides with predictable biofunctionalities could be produced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.