Abstract

This paper analyzes the mechanism of solar radiation which causes the perturbation acceleration. After that, a solar radiation pressure perturbation model is developed for the Inclining Geostationary Synchronized Orbit (IGSO) satellite using the finite element approach. The effect of space environment parameters on the solar radiation pressure model is analyzed. These parameters include solar radiation intensity, optical property parameter of satellite surface, temperature difference of thermal radiation, and Earth infrared radiation intensity. The results show that, because of solar radiation pressure perturbation is a non-conservative force caused by interaction between the space environment and the satellite surface, the model precision would decline to different level varying with the space environment parameters mentioned. The error of the solar radiation pressure model caused by the solar radiation pressure and optical property parameter of satellite surface is crucial, whereas the effect of temperature difference of thermal radiation and Earth infrared radiation intensity could be ignored. The precision declining of the solar radiation pressure model due to space environment change should be concerned during orbit determination and correction for the solar radiation pressure model should be made on the basis of space environment parameters change given by other observation means.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.