Abstract

Water retention curves play a critical role in numerical simulations for predicting fluid production and sediment deformation behaviors in gas hydrate-bearing sediments (GHBSs). This study uses a new testing assembly that combines gas drainage and low-field nuclear magnetic resonance (NMR) tests to determine the water retention curves of artificially synthesized clay silty specimens. The effect of hydrate on the pore size distributions and water retention curves is analyzed via NMR transverse relaxation time curve distributions, and the mechanism of changes in the water retention curve parameters is further discussed. The results show that hydrate formation decreases the proportion of pores with sizes greater than 15 μm and increases the proportion of pores with sizes less than 3.5 μm in clay silty sediments. Hydrate formation increases capillary pressure and prevents available water migration. The presence of hydrate exponentially increases the normalized capillary pressure but exponentially decreases the normalized curve shape factor, yielding narrower curve distributions. The gas entry pressure and curve shape factor exhibit linear correlations with the pore size distribution parameters. The results imply that the changes in the water retention curves are strongly related to the initial pore size distributions. This study offers a deep understanding of capillary effects-related water retention characteristics and their underlying links with the pore size distributions, and demonstrates that low-field NMR has great potential for characterizing water retention curves of GHBSs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.