Abstract

Wave-powered boats can harness wave energy to drive hydrofoils to generate propulsion, and the arrangement position between dual hydrofoils has an obvious effect on the magnitude of propulsion generated. In this paper, the effects of the arrangement position between dual hydrofoils on the propulsion of wave-powered boats are studied. An instantaneous equivalent model of dual hydrofoils based on the local frame at the equivalent position is developed according to the relative motion principle, and the propulsion of the rear hydrofoil is calculated, and the reliability of the equivalent model results was verified through experiments. Through the augment optimization calculation based on the validated model mentioned above, the propulsion of the rear hydrofoil with different arrangement positions is obtained and the corresponding positions of the hydrofoil with larger propulsion are listed. Subsequently, a fluid-structure coupling model is established on the basis of the results obtained from the optimization calculation, and the dynamic response of the wave-powered boat is solved under different arrangement positions. It is evident that different horizontal and vertical arrangement positions of the dual hydrofoils have different effects on the propulsion performance. This is primarily due to the different influences of the wake vortices generated by the front hydrofoil acting on the rear hydrofoil, causing different fluctuations during its rotation process, thereby affecting propulsion. Overall, a reasonable arrangement position can effectively improve the propulsion of the wave-powered boat. The relevant research in this paper can provide a reference for similar hydrofoil arrangement designs of the wave-powered boat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call